湿度を極める!・・・毛髪式自記記録計のお話し

最近、毛髪式自記記録計についてご質問をされたので、

ここで少しお話しをさせていただきます。

この毛髪式自記記録計は湿度-測定方法(JIS Z 8806)では、

毛髪湿度計という名称になっています。

1783年にスイスのソーシュル氏によって発明されたのですから、

現役の湿度計とすれば最古に分類されます。

アスマン通風式湿度計は1880年なのでちょっと驚いてしまいますね。

 

毛髪式自記記録計の原理は毛髪の湿度による伸縮と連動し・・・

ドラム状になった記録紙上を指針の先のペンによって記録を行ないます。

同時にバイメタル等で同様に温度を記録する機能をもち、

一般的には自記二段記録計と呼ばれています。(温度と湿度で二段、自分で記録するから自記)

注意点は以下の通り。

・毛髪が汚れていると指示のくるいが生じる。
・低湿度での長時間放置は避ける。
・30%RH以下で正確な湿度測定は困難である。
・風圧がかかると指示に狂いが生じる。
・60℃以上での使用は避ける。
・有機溶剤が存在する雰囲気では使用できない。
・校正は、標準湿度計との比較により調整を行なう。

「校正は標準湿度計との比較により調整を行なう」とされているので、

定期メンテナンスが必要なのであります。

さらにメーカーによっては試験成績書や気象庁検定付きなどがありますが、

発送に宅急便を使うと振動で目盛りが当然狂う可能性があり、

力学的な湿度計なので疑問が残ります。

 

写真:アムステルダム国立美術館(蘭: Rijksmuseum Amsterdam)

 

日本では美術館や倉庫等の管理用として数多く販売されている毛髪式自記記録計。

なぜ、電子式湿度センサを使用した記録計に変わらないのでしょうか。

その理由としては紙を使った記録計の衰退とデータロガの普及と関係があります。

機構が機械的な毛髪式自記記録計は安価で製作できますが、

センサと紙を使った記録計との組み合わせはコスト高・・・

したがって最近は小型ロガに切り替わっているのですが、

記録紙に残るというのは改竄が出来にくいため好む方がいるのですね。

 

有名なレンブラント・『夜警』(1642)

海外の絵画の多くはそのまま展示されています。(盗難や事故があったものは別)

美術館をまわるとちょっと驚きます。

海外の美術館は歴史ある建物で大きく広いため環境変動も少ないのでしょうか。

 

それに対し日本ではケースに入れられる場合が多くあります。

それの考察が次のグラフです。

 

左が電子式湿度センサを使って計測をした例と、

右が毛髪式自記記録計を使って計測した例。

昔、ゴッホのひまわりが日本に来たときに計った時・・・

このような感じになったのですね。

毛髪式自記記録計は応答性や感度が悪いために、

絵画にとって非常に良いデータが取れています。

しかしながら日本の美術館の多くは空間が狭く、

空調機が常時制御している状態が多いのです。

当時は20分から30分の間隔で温湿度が変化しておりました。

これにより湿度衝撃という現象が起こり、

絵画自体に短期の延び縮みが起こるため劣化が促進します。

これを防ぐためにアクリル等のカバーを空調干渉、

紫外線カットを目的として設置するのです。

どちらにしろ毛髪式自記記録計を単独で使うのにはリスクを生じます。

 

ちなみに相対湿度の場合・・・

温度が1度上がると湿度は3%下がります。

湿度変化の起因は温度変化が元とも考えられるのですね。

 

少々長くなりましたが、

毛髪式自記記録計の伝説的キーワードについて、

最近、思いついたことを書きます。

「毛髪式自記記録計の毛髪はフランス人の処女の方の毛髪の特性が良い」

僕も長らく湿度に関わって不思議だと思う言葉なのですが、

先日、この世界遺産である富岡製糸所に行って気が付きました。

 

製糸所の中ではお湯を炊き絹糸を取ります。

当然、湿度は高湿になるために上部の建物には、

抜くための特殊な形状の屋根にしているそうです。

明治5年、明治維新直後に明治政府が日本の近代化のために設立した模範器械製糸場です。

あの西郷どんがまだ政府の中核にいるころの話なので驚きます。

この時、日本には製糸に関しての知識が少なく、

招いたのが当時、製糸の先端を行っていたフランスの技師オーギュスト・バスティアンさん。

繭から糸を取る繰糸器もフランスから取り寄せています。

繰糸器の技術には湿度計測が欠かせないため、

フランスで毛髪式自記記録計が進化したのではないのでしょうか?

色々な毛髪を試した結果・・・

「毛髪式自記記録計の毛髪はフランス人・・・」という結論に繋がったと思う次第です。

「エジソンの白熱電球は京都の八幡村にある竹をフィラメントに使った。」これに似ています。

ちなみに現在は馬のしっぽの毛を20~30本束ねていると聞いております。

面白いですね。

温度と湿度で悩んだらお気軽に私宛にメールして下さい。

温度を極める・・・お薦めの食品向け温度計について語る

11月に新潟の日本酒ソムリエの方と話す機会がありました。

その時に飲んだ日本酒は色々とありますが・・・

1年ほど違う環境で保存した同じ銘柄の日本酒を利き酒してその違いに驚いたのであります。

 

①ひとつは地中のトンネルのような温度が安定していると思われる場所。

②もうひとつは酒蔵で温度が安定しているのですが人の出入りは少なくともある場所。

 

この保管だけの違いで素人でも分かるぐらい味が違っていたのです。

・・・もちろん、まろやかで美味しいのは①の方でありました。

今回はこの違いに関しての推測を行い、

食品で使用するのに適した温度計の紹介をしたいと思います。

経験的に言えば温度が安定しているという事は、

実はとても奥が深い状態を示すのですね。

 


この計器は気象庁や産業総合技術研究所などで使われている温度の標準器です。

かなり大きなものですが・・・

温度表示が小数点以下10桁まで表示するのですね。

つまり、23.0012579634℃という感じです。

 

これにつながれている温度センサは太さが10mmほどあります。

これほど太いと温度の感度が低いと思っていたのですが、

手を団扇のように煽ってみると・・・

下の5桁ぐらいがパラパラと体温を感じてか変化するのですね。

これには正直びっくりしました。

ここで何を言いたいかというと、

温度の変化というのは思っていた以上にあるのだと言うことです。

みなさんがお使いになっている温度計で小数点以下が表示しないものや、

小数点一桁のものでは本当の変化は見ることが難しいのであります。

 

さて、次に最初に書いたお酒の状態を推測してみます。

通常、一升瓶のお酒の量としては1.8㍑になります。

これもメートル法により正確には1.803 906 837 リットルだそうです。

温度もそうですが小数点以下って凄いです。汗

これだけの熱容量を持つ物が温度変化が頻繁に変化する可能性は少ないので、

この絵のような予測をしてみました。

 


一升瓶のお酒に与える影響は次の5つがあると思います。

気温の変化、輻射熱、物体からの熱伝導、太陽光、エネルギー波。

酒蔵から見ると太陽光と物体からの熱伝導はまずは考えられないので除外します。

残るは気温の変化と輻射熱が1番有力でしょう。

電球、ストーブ、人の体からも輻射熱は出ているので・・・

その赤外線が瓶の表面の温度を変えるという可能性はゼロではありません。

 

瓶の表面から伝わった熱がガラスの縦方向に差が出た場合や、

瓶の表面から伝わった熱が中心のお酒と横方向に差が出た場合、

一升瓶の中身であるお酒が部分的に対流を起こしたのではと推測したのであります。

ゆっくりではあるのですがこれがお酒の風味に影響を与えた理由ではないでしょうか?

1年もの歳月が蓄積した結果かも知れません。

小数点以下の僅かな温度差でも原理的には対流は起こるのです。

 

最後に電波や電磁波などのエネルギー波による影響ですが・・・

これを避ける為に電波暗室で温度研究をしている方は

極低温域だったと聞いたことがあるので割愛いたします。

 


さて、このような温度計測に向いている温度計ですが、

これは過去の記事を読んで頂きたいと思います。

温度センサの方式で選択するのが1番重要です。

 

このグラフのように熱電対方式は×ですね。   →過去記事

熱電対自体がノイズを拾ってしまいます。

 

白金測温抵抗体がベストですがコスト面からは高額製品が多いようです。(愛用機)

 

その中の僕のお薦めはサーミスタ温度センサだと思います。

一般的にサーミスタは安価向けで精度が悪いという認識があるのですが、

温度範囲が狭い領域では良い特性が得られます。

0.01℃表示で酒蔵・倉庫などの温度域で使う場合、

5万円ほどで買うことが出来ます。

パソコンなどにログなどを落とし記録も出来る物もあるので、

温度幅を拡大してみると見えない物見えてくるのではないでしょうか?

 

その他、温度計で内部演算などで応答性が遅くなっているものも向きません。

推奨製品は写真を使用する許可が得て無いので興味ある方はお問い合わせくださいませ。→こちら

温度と湿度で悩んだらお気軽に私宛にメールして下さい。


湿度を極める!・・・潜熱についてのあれこれ

夏の暑い日に水を撒くという習慣が昔はありましたね。

エアコンの普及からあまり見られなくなりましたが、

なかなか趣のある風景でありました。

 

この水を撒くという目的ですが・・・

単に冷たい水で道路を冷やすということでは無く、

水が蒸発するときの気化熱により温度が下がるという物理現象を利用しているのです。

暑いと汗をかくことも同じように体温を下げる目的なので、

とても合理的だと思うのです。

 

さて、この潜熱という現象は水に深く関わります。

 

気体、水、氷の状態と熱の種類を表したものがこちらです。

液体から気体、あるいは固体から液体に変化するためには、

外部から熱を加える必要があるのです。

身近な所ですと氷を入れて攪拌する水はほぼ0℃で一定温度を保持するし、

大気圧中で沸騰している水は約100℃を保持します。

こんな感じで熱エネルギーが物質の構造変化に姿を変えるために、

見た目の熱変化を伴わず保持することから・・・

”潜って目に見えない”熱変化という意味で潜熱と呼ぶのですね。

 

温度をゆっくり下げていって正確に温度を測ったグラフがこちら。

0℃のところでちょっと保持することが分かりますね。

 

さて、湿度における潜熱という現象をちょっとご紹介しましょう。

1番よく使う言葉が蒸発潜熱です。

蒸発潜熱とは液体状の物質(水)が気体状の状態(水蒸気)に変化する時に必要な熱を指します。

 

この現象を使って湿度を測定する計測器をアスマン通風乾湿計と呼んでいます。

ドイツ人のアスマンさんが1880年ごろこの素晴らしい発明をしました。

2本の温度計を用意して1本にガーゼを薄く巻きます。

そちらを水で湿らすことで気化熱により温度が低くなるのですね。

この温度は周りの湿度によって差が大きくなったり小さくなるため、

気温を測る温度計との温度差で湿度に換算することが出来るのです。

専門的に書くと・・・Sprungの公式を使用して算出するのであります。

 

詳しくはこちらをご覧下さい。

 

ちょっと悩ましいのですが・・・

この優れたアスマン通風乾湿計で使われているのが水銀温度計。

2013年10月に採択、署名された「水銀に関する水俣条約」により、

今後、水銀添加製品や水銀含有廃棄物の処理が容易にできなくなります。

湿度計測分野では(水銀を含有するタイプの)アスマン式通風乾湿計が本条約の対象となり、

2020年から製造および輸出入が「禁止」されることになるそうです。

これを知ったらアスマンさん驚くでしょうね。

 

相対湿度も絶対湿度も計れる私の1番お薦めの温湿度計がこちら→計測用温湿度センサ

もちろん水銀は使いません。笑

超低湿度をテーマにしたセミナーのご案内

かなり専門的にはなってしまうのですが、

温湿度マイスターの私/武田が講演を依頼されました。

テーマは・・・リチウムイオン電池の製造プロセスにおける・・・

「超低湿度環境の維持、ドライルーム運用、湿度計測」

であります。

講師の方は以下の通りです。

【第1部】西野技術士事務所 所長 工学博士 技術士 西野 敦 氏
元・パナソニック(株) 本社研究所所長
電気化学会・キャパシタ技術委員会 元・委員長

【第2部】 (株)大気社 環境システム事業部 技術統括部 設計部 本岡 義啓 氏

【第3部】 (株)第一科学 執行役員 特機事業部事業部長 武田 秀樹 氏

【第4部】 JFEテクノリサーチ(株) ソリューション本部(千葉)
電池・材料解析評価センター長 島内 優 氏

おお~私を除いて凄い方ばかりです。笑

私も当日は聴講できるので今から楽しみなのですね。

講演内容はこちらをご覧下さい→→→セミナー案内

 

特にリチウム電池解体技術と調査事例、電池材料の微細構造と分析技術など

まさに今が旬の題材。

リチウム電池の不具合におけるリコールなどは毎年のように起こっていますからね・・・

 

ここで技術情報協会さんからのご厚意によりこのブログを読んでいただいた方に特典!

下記の用紙で申し込みを行うと講師紹介特別割引が受けられます。

通常、丸1日食事付きのセミナー60.000円が半額の30.000円になります。

実践的なお勉強からするとお得感があると思います。

 

さて、さて、まずは一生懸命資料を作成しなければと思う今日この頃です。

こちらからダウンロードしてくださいませ。

 

湿度を極める!・・・恒温恒湿槽に違う方法でアプローチ!

いろいろな温度と湿度の環境を作る装置として恒温恒湿槽がありますが、

今回はその続きであります。

この方法で作った私達の装置はより高精度な恒温恒湿槽として・・・

すでに気象庁をはじめとする全国の校正機関で採用されているのですね。

まずはその方法ですが湿度計ー性能試験方法(JIS B 7920)に書かれています。

発生方法としては4種類あると思って下さい。

● 二温度法
● 二圧力法
● 二温度二圧力法
● 分流法

ここで1番使い易い方法の二温度法と分流法を中心に説明しますね。

 

二温度法とは・・・

試験槽より低い温度において水蒸気で飽和された飽和槽内の空気を試験槽へ送る。両槽内の圧力が等しければ、試験槽内の相対湿度は飽和槽内の温度における飽和水蒸気と試験槽内の温度における飽和水蒸気圧の百分率で求められる。試験槽内の設定温度に対して飽和槽内の温度を調節して、所定の湿度の空気を発生させられる。

ちょっと難しい言葉で書かれているのですが、

簡単に言えばある温度で湿度100%を作り、

温度の高いチャンバーに送ることにより任意の湿度を作る方法です。
(温度が高くなると相対湿度が下がるという理屈です)

 

ちなみに飽和槽とはこのように空気(ガス)を細かい泡状にして、

水の中を通すことで加湿する方法です。

水は温度を精度良くコントロールできるので、

加湿器とは違い具合が良いのですね。

 


お次は分流法についてです。

分流法とは・・・

乾燥空気を二つに分流し、一方は飽和槽を通して水蒸気で飽和させた後に二つの流れを混合し試験槽へ送る。
試験槽内の相対湿度は、両槽内の温度及び圧力並びに乾燥空気の分流比から求められるので、この分流比を調整して所定の湿度の空気を発生させられる。

これも簡単に言うと・・・

湿度0%と湿度100%の空気を同じ量だけ混ぜ合わせると、

湿度は50%になるというものです。

この割合を変えることでほぼ全域で湿度がコントロールできるのです。

 

このような方法を使ってチャンバーに湿度を送り込むのですが、

チャンバーの方の温度コントロールも一工夫しています。

 

それがこの水を循環する方法です。

温度が0℃以下、100℃以上の場合は水以外の熱媒を使います。

もちろん・・・チャンバーを水に水没させる方法もありですが、

試料やセンサを出し入れするにはこれが良かったのですね。

 

当ブログの運営母体である第一科学では、

上の二つの発生方法を組み合わせて装置をマニアックに作り込んでいます。

そのフロー図がこちらです。

この発生装置(二温度分流法)は原理的には簡単なのですが制御が複雑なため、

様々なノウハウがこの中ににあるのです。

この装置の特長を2つほど紹介しましょう。


まずは一つ目ですが・・・

前記事で書いた恒温恒湿槽はPID制御を採用しています。

この制御のトレンドとしては左のような傾向になります。

設定値に対し差が徐々に小さくなる感じになります。

特にこれが顕著に表れるのが高湿域ですね。

いわゆる天井(100%rh)がある為に結露が生じ易かったりします。

 

それに対して二温度分流法では定まった湿度をチャンバーに送り込む為、

オーバーシュートがありません。

設定値に綺麗に近づくトレンドを得ることが出来るのです。

しかも安定性にも優れています。

 

 

二つ目の特長がこちらです。

恒温恒湿槽では実現できない温度と湿度の領域が可能になります。

特に氷点下環境試験には有効だと考えています。

 

興味のある方は一度、こちらを見て下さいませ!

 

氷点下でも環境試験が出来る装置→こちら

湿度を極める!・・・恒温恒湿槽とは?

いろいろな温度と湿度の環境を作る装置として恒温恒湿槽があります。

これがとても便利な箱で・・・

部品の耐久性試験、薬などの保存安定性試験、いろいろな研究開発などにも使われているのですね。

日本の製品は壊れないという定説の陰には、

この恒温恒湿槽という存在が欠かせないのであります。

特に自動車業界ではこのような装置を5000台以上所有している会社もあるので、

ちょっと驚いてしまいます。

 

話は脱線しますがこの恒温恒湿槽の恒の字を調べてみると・・・

①いつでも変わることなく同じであること。永久不変であること。
②いつもそうであること。ふだん。平素。
③昔からそのようになるとされていること。当然の道理。ならい。ならわし。

と書いてありました。

「いつもそうであること」はまさに温度と湿度の環境を一定にする事に通じていますが、

ここでちょっと意地悪な解釈をしてみますね。

「昔からそのようになるとされていること」という言葉。

これを「本当に今のままで良いの?」という切り口で解説してみます。

 

まずは恒温恒湿槽の仕組みを見てみましょう。

扉を開けて中を覗いてみると奥に空気の取り入れ口と吹き出し口が見えます。

実はこの奥にこの絵のような仕組みが隠されているのですね。

・槽内に温湿度センサーを設置。
・その信号を調節器に入力。
・冷却器と加熱器で温度を制御する。
・湿度は加湿器と冷却器(除湿器)で制御している。

ここでちょっと考えていただきたいのは・・・

小さな箱の中に熱い部分、冷たい部分、除湿する部分、加湿する部分がある事。

これは安定する環境を作ることの原理原則からは矛盾しているのです。

だから温度分布も湿度分布も起こしやすいという特質を持ってしまっているのです。

 


実際にこの絵のような位置でその分布を見てみましょう。

一般的に恒温恒湿槽の世界ではこれを9点測定と呼んでいます。

もちろん、性能確認には規格があるので興味ある方は紐解いてみてください。

「IEC 60068-3-5 温度試験槽の性能確認の指針など」

 


これが実際に計測をした温度の性能を計測した表です。

一般的に大体同じようなフォームで記載されて恒温恒湿槽メーカーから提出されるのですね。

 

比較的条件の良い20℃設定においても内部の分布は0.3~0.5℃存在します。

縦軸で見ると時間ごとにこれも0.3℃ほど変化していることが分かります。

つまり、温度の制御自体比例制御で行っているので、

安定と分布などが重なって最大幅で0.8℃変わっていることが確認出来ます。

性能としては槽中央の温度のみを無負荷で平均化して表示しているのでよく見えてしまうのです。

 


お次は湿度です。

相対湿度の場合・・・温度分布により相対湿度が1番影響されます。

これには一定の関係があって1℃温度が上昇すると湿度は3%降下する。

従って最大幅で0.8℃変わっていることより・・・・

0.8℃?3%=2.4%の変化があることになります。

理論的には小さくすみそうなのですが・・・

表を見てみるとかなり大きな分布が存在します。

特に条件の良いと思われる槽中央の位置が高く表示しています。

加湿する場合、槽内の奥下にパンに水が張ってあるのですが、

この加湿によりどうしても分布は大きくなるようです。

非常に面白いデータであります。

これを知った使用者の方が温湿度センサを使って実測する気持ちが分かりますね。

 

そのような時に使われるセンサはこちらが多いので紹介しますね。

計測用温湿度センサ

 

 

 

 

 

 


さて、最後に恒温恒湿槽の温湿度設定範囲を見てみましょう。

パンに水が張ってある構造上・・・

自然と水が揮発してしまうことから低温・低湿が苦手です。

除湿器と組み合わせして行う方法もあるのですが、

あまり良いデータは取れていないと聞いています。

 

これに対し全く違うアプローチを次に記事に書きますのでお楽しみに!

スペイン・世界気象学会に行ってきました。

meteorological2016年9月27日~30日。

気象庁の方に誘われてスペイン・世界気象学会に行ってきました。

僕は民間の人間なので展示会メインの仕事。

発展途上国向けに開発したポータブル湿度校正器Humi Pumpの紹介なのであります。

それにしても海外出張がポーランドに続いてスペイン。

忙しくてブログの更新が出来ませんでした。<m(__)m>

HumiPump1

この展示会の名称が・・・Meteorological Technology World Expo2016。

気候、天候、水理気象の計測、予測、分析技術に特化したイベントです。

世界をリードする航空会社、航空機運航業者、船舶会社、海産/港湾業者、

空港、軍事計画、海洋調査会社、ウィンドファーム運営会社、気象庁、

農産業運営、研究機関に籍を置く方々がこのイベントに集います。

ちなみに気象学会はCIMO-TECO会議という名称。

世界中の学者の方の発表も聴くことが出来ましたよ。

 

madrid1

この展示会場はマドリッド。

気候は日本と変わらずに暑いのですが湿度が低くさわやかでした。

毎朝、ホテルから地下鉄に30分ほど乗って通ったのです。

 

madrid2
初日の搬入日にちょっとトラブル。

展示ブースも準備されず荷物も届いていませんでした。

いや~ノンビリしておりますの~!

これにはちょっと焦りましたね。

 

hamu2

hamu

まあ・・・そんな時は午後から市内見物。

100年以上の歴史のある市場でイベリコ豚の生ハムランチであります。

ちなみにスペインで食べた生ハムは塩分が強くありませんでした。

脂身の部分がとても美味しかった!

日本で食べた生ハムのイメージが変わりましたね。

 

madorod3
当日になって荷物も届き無事スタート。

お陰様でHumi Pumpは大好評でしたね。

気象業界は衛星・レーダーなどを使う最先端の研究者から、

発展途上国など普及の遅い地域の研究者の方々と様々。

それぞれ直面する課題が違っています。

実際に行ってみて世界観が変わりましたよ。

 

madorid4

そうそう韓国の展示も凄かったです。

国が牽引している為に統一感があります。

これは他の国には無かったところですね・・・

日本から参加した会社は10社もあったので、

いつかオールジャパンで出してみたいと皆々様言ってました。

 

madrod5
英弘精機さんは日射計のメーカー。

とても綺麗なブースでしたね。

 

madrid6

明星電気さんはラジオゾンデを出展。

日本の気象技術を支えているメーカーさんだけあって、

説明員の方もワールドワイドの印象がありました。

 

madorid7

CIMO-TECO会議で気象庁の方も発表しました。

その中でHumi Pumpを使った発展途上国向け技術供与の例も発表。

なんか・・・

自分たちの小さな技術が世界気象の役に立っていると考えて嬉しくなりましたよ。

 

madorid8

中日でWMOヴィルホ・ヴァイサラ教授賞の授賞式がありました。

「これは1985年にヴィルホ・ヴァイサラ教授賞が設立されました。
この賞は世界気象機関(WMO)が運営し、気象観測の手法と設備に
関する気象学研究に対する関心を高めることを目的として授与されています。
優れた研究論文を表彰し、賞金、メダル、賞状が授与されます。」

気象業界では現在TOPの企業さんですが、

創始者はほんと偉かったのですね。

主に発展途上国の研究者に送っているそうです。

 

madorid9
遠くスペインまで行ってきましたが、

とても印象に残る出張でありました。

当初は治安が心配でしたが不安にはなりませんでしたね。

親日の方も多く・・・

今度は休暇で行きたいと思った次第です。

TEMPMEKO2016にポータブル湿度校正器Humi Pumpが大好評でした!

 

hiroba

2016年6月25日(日)~7月4日(月)。

ポーランドにおいて開催されたTEMPMEKO2016に参加して来ましたよ。

行ったのは第一科学 温湿度マイスター 武田、並びに古林であります。

湿度校正器Humi Pumpのポスター発表と展示を行いました。

また、各国の研究者の温度湿度に関する発表も聞いてきました。

 

hotel

TEMPMEKO2016とは・・・

この国際会議は3年に一度開かれる温度.湿度の学術会議であります。

出席者は300名以上。

各国の温度標準、湿度標準に携わる研究者が集います。

日本では産業総合技術研究所(通称AIST)、米国ではアメリカ国立標準技術研究所(通称NIST)、

ドイツはマックス・プランク研究所(通称MPG)、イギリスではイギリス国立物理学研究所(通称: NPL)等

などと世界のTOPレベルと交流できる場となっています。

 

zakopane
今回開催されたザコパネはポーランドのクラクフから2時間ほどの場所にある

リゾート地、日本で言えばクラクフが長野、ザコパネが軽井沢という感じでしたね。

 

poster
ポスター展示について・・・

ポスター形式ではありますがこれも正式な論文発表の位置付けになります。

今回は産総研湿度標準の阿部先生に指導いただき、

準備に4ヶ月を掛け無事発表を行う事が出来ました。

正式な配布文書にも英文記載されているのでとても嬉しかったのであります。

 

発表は初日の朝の1時間半、30枚ほどのポスターと共に展示説明を行いました。

写真のように湿度校正器Humi Pumpは大好評で多いときには10名程度に

取り囲まれるほどでありました。

説明に関しましてはかなりのスキルが要求される為・・・

神栄テクノロジーのS氏にお願いをして対応致しました。

人数を裁くのにかなり高速な会話が要求され・・・

率直に言って私の語学力では無理無理なのであります。

結局、1時間半の間、人が途切れることはありませんでしたね。

う~ん。大好評でした。

 

tennji

展示会はホテルの各階のフロアにて行われました。

ホテルは歴史があり格式の高さを感じる良いホテルでしたね。

写真のように神栄テクノロジーさんとの合同出展を行い、

初日から木曜日まで展示を行いました。

湿度校正器Humi Pumpは誰にも好評でしたね。

今回は取説を漫画で英語にて作成し配布しましたが、

これも受けが良く語学力の不足分を多少補う事が出来た気がします。

 

foods

ポーランドに関しての感想を最後に書きますね。

この国ですが治安もよく、食事も美味しい、人々が親切等々。

素晴らしい国でありました。

湿度校正器Humi Pumpの世界デビューも無事終了し・・・

めでたしめでたしなのでありました。

湿度を極める!・・・飽和水蒸気圧表から露点温度を求める。

実は湿度というものの原点は飽和水蒸気圧表なのです。

これは湿度-測定方法(JIS Z 8806)で入手できます。

よく相対湿度から絶対温度を計算する式が欲しいと聞かれますが、

これらの式は近似式も多くこの表を使うのが一番のお薦めなんですね。

 

例として室内が温度23.2℃、相対湿度45%と仮定して説明しましょう。

 

suijyoukiatuhyou1

今回はこの表を使って温度と相対湿度から露点温度を求める方法を書きたいと思います。

相対湿度を求める式は・・・   U=e/es?100

U:相対湿度(%) e:水蒸気圧(Pa) es:飽和水蒸気圧(Pa)

これを頭に入れてご覧下さい。

仮に温度23.2℃の時の飽和水蒸気圧を表から見つけます。

この表では縦軸が小数点以上の温度。

横軸が小数点以下の温度となっています。

したがって縦軸で23、横軸で2の飽和蒸気圧を見るんですね。

答え・・・2845.2Paが飽和水蒸気圧となります。

 

suijyoukiatuhyou2

次に湿度を45%と仮に設定します。

飽和水蒸気圧は相対湿度100%となるので、

相対湿度の式から45%の水蒸気圧を逆算します。

これで1280.3Paが求められます。

そうです・・・相対湿度は意外に難しいのですよ。

 

suijyoukiatuhyou3

今度は飽和水蒸気圧表から露点温度を求める作業をします。

これは簡単ですね。

1280.3Paに一番近い数字を表から探すだけなのです。

1278.4Paが近いのですが一致することはめったにありません。

もう少し正確にする場合は隣の1286.9Paと比の計算をします。(参考)

ここで温度を読んでください。

縦軸が10℃、横軸が.6℃となり10.6℃が露点温度になります。

 

suijyoukiatuhyou4

この露点温度をビールの温度でイメージすると・・・

ビールをコップに注ぐとコップの周りに結露が生じます。

これがコップの表面温度が10.6℃以下になると結露が始まるという意味なんですね。

以上が温度・湿度・露点温度の関係でありました。

 

まあ、基本ビールは10℃以下が美味しいので、

こんな表現をしてみたのです。

湿度を極める!・・・湿度校正器「Humi Pump」でおんどとりを校正する

shitudokousei

最近、湿度校正器「Humi Pump」を使っていろいろな温湿度計を校正する事が多いのです。

どの温湿度計が校正できるとか出来ないとかを判断するためなのです。

色々とお客様のお話を聞くとやはりおんどとりを使っている方が多いと実感しますね~。

しかも使っている台数がかなり多い・・・

そんな方のために今回は実際におんどとりを校正した結果を紹介致しましょう。

 

srg
まずは日本で1番校正に使用されている分流式湿度発生装置を使用し、

精度の高いロトロニック社製温湿度計とおんどとりの温湿度精度を確認します。

分流式湿度発生装置SRHは9割以上の湿度センサメーカーが使っているので安心です。

その時に取った器差表がこちらです。

 

ondotori1
1番右の露点計がJISで標準湿度計に位置づけされたものです。

おんどとりには2種類あって高精度タイプと標準タイプがあります。

標準タイプは小数点以下が出ないので・・・

器差付けがちょい難しい判断が必要ですね。

ロトロニック社製温湿度計は精度が±0.8%なので器差が少ないです。

さすが長年評価の高い湿度センサの名作であります。

 

私の1番お薦めの温湿度計がこちら→計測用温湿度センサ

 

 

 

 

 

 

 

ちなみにおんどとりの標準タイプは湿度が高湿になると誤差が増えています。

一応、精度が±5%なのでこれも充分精度範囲に入っているのです。

 

ondotori2
さて、湿度校正器「Humi Pump」の校正風景はこのような感じです。

最近、窓付きの校正袋も開発したので・・・

おんどとりの表示も見やすいです。

これだと3台ぐらいは見えると思います。

おんどとりには延長ケーブルもあるので、

表示部を袋の外に出すと台数は増やせます。

もちろん、もともと高精度タイプはセンサ分離式なので、

こちらは問題なく台数は稼げますね。

 

ondotori4

まずはポンピングを30回を2回行います。

お次に1分ごとに10回ほど追加ポンピングをしてみました。

ここでおんどとりの標準タイプにちょっとした問題が・・・

応答性が8分とあるので・・・

校正時間も8分以上必要です。

さらに本体内部に空間があるのでそこで吸湿されてしまうようです。

湿度30%のグラフを見ると遅れが確認出来ます。

結果からするとロトロニック製温湿度計は1から2番目で・・・

おんどとりの標準タイプは4番目で充分値付けできる感じですね。

(現在は工夫によりポンピング回数は20回で可能になっています)

 

ondotori5
逆に50%のところでは遅れは確認出来ませんでした。

たぶん、ロガの温度が1℃ほど低いので、

その分高く表示している可能性が大です。

まあ・・・精度が±5%なのでこんなものかもしれません。

 

結論でいえばおんどとりも問題なく校正できました。

外部に定期的に温湿度校正に出している方・・・

湿度校正器「Humi Pump」を使うと維持費も安く出来ると思った次第です。

1 2 3 5